
HOAc

Ar-H

COOR

COOR

Ar
COOR

COORH

+
COOR

COOR

COOR

COOR

+ +

Ar
COOR

COORH
Ar

COOR

COORH
Ar

COOR

COOR

- H+

- Mn(OAc)2

- ACO-

+

Mn(OAc)3 Mn(OAc)2

Mn(OAc)3

TETRAHEDRON
LETTERS

Tetrahedron Letters 43 (2002) 4675–4678Pergamon

Synthesis of 1,3-disubstituted naphthalenes from the
Baylis–Hillman acetates with the aid of manganese(III) acetate
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Abstract—1,3-Disubstituted naphthalene derivatives can be easily synthesized from Baylis–Hillman acetates by successive reaction:
(1) SN2� type reaction with diethyl malonate or ethyl nitroacetate; (2) manganese(III) acetate-assisted radical cyclization and (3)
aromatization with NaI/O2 system or elimination of nitrous acid. © 2002 Elsevier Science Ltd. All rights reserved.

The Mn(III)- and Ce(IV)-induced homolytic malonyla-
tion1 or nitroalkylation2 of aromatic compounds has
been studied extensively.1,2 The reaction might occur as
depicted in Scheme 1. The intramolecular version of the
reaction can also be carried out. Thus, malonate deriva-
tives with aromatic ring at the �-position would give
tetrahydro- or dihydro-naphthalenes depending on
their structure.1g,1j,1k

Regioselective synthesis of naphthalene derivatives has
been and continues to be of great interest in organic
synthesis.3 A new synthetic procedure is still highly
desired due to the abundance of the skeleton in many
biologically important natural products.3,4 Recently we
have reported on the synthesis of naphthalenes from
the reaction of the Baylis–Hillman acetates derived
from o-halobenzaldehydes and primary nitro alkanes

via the successive SN2�–SNAr elimination strategy.4 In
the previous paper there must be a halogen atom at the
ortho position of the benzaldehyde moiety.

In order to shed more light on the facile synthesis of
naphthalenes4 and to generalize our previous methodol-
ogy, we focused our attention on the synthesis of
naphthalenes from Baylis–Hillman adducts derived
from benzaldehydes without a ortho-halogen sub-
stituent. Thus, we tried the Mn(III)- or Ce(IV)-assisted
cyclization of malonate derivatives with aromatic ring
at the �-position, which could be prepared easily from
the reaction of diethyl malonate and the Baylis–Hill-
man acetates of benzaldehydes. As shown in Scheme 2
and in Table 1, the reaction of 1a and diethyl malonate
in the presence of K2CO3 in acetonitrile gave 2a in 81%
yield.5 The reaction of 2a with Mn(OAc)3 (6 equiv.) in

Scheme 1.
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Scheme 2.

ethanol gave the dihydronaphthalene derivative 3a in
66% isolated yield. The use of CAN (cerium ammo-
nium nitrate) for the conversion of 2a into 3a was less
effective than the use of Mn(OAc)3 in view of yield and
unfavorable formation of many side products. Conver-
sion of 3a to the naphthalene derivative was carried out
with a NaI/O2 system1i in DMF to give 4a in 70% yield.
With these results in hand we extended the reaction
toward various combinations and the results are sum-
marized in Table 1. In other cases (entries 2–4) we did
not separate the intermediacy dihydronaphthalenes 3.
Crude 3 was used in the next oxidation step without
purification. As shown in entry 2, dimethyl malonate
derivative 2b showed similar results.

The reaction mechanism for the formation of dihy-
dronaphthalene 3a and its conversion to naphthalene
4a is depicted in Scheme 3. Generation of malonyl
radical I, addition to aromatic ring and coupling with
acetoxy radical to give II, elimination of acetic acid
furnished 3a. Successive decarbalkoxylation and
autoxidation6 of 3a gave the naphthalene 4a.1i,6 It is
uncertain at this stage which step proceeds first, decar-
balkoxylation or autoxidation. Further studies on the
reaction mechanism for the conversion of 3a to 4a are
in progress.

We extended the reaction with primary nitro alkane
derivatives, which were known to undergo the Mn(III)-
assisted radical coupling to arenes.2a,b In these cases
naphthalene derivatives were obtained directly in good
yields (entries 5–9). The aromatization step was not
necessary when we used nitro compounds. Elimination
of nitrous acid from the intermediacy dihydronaph-
thalenes might occur in the reaction conditions directly,
as depicted in Scheme 2.

A typical procedure for the synthesis of 5a and the
selected spectroscopic data was mentioned in Ref. 5.
Extension of this methodology to the synthesis of vari-
ous heterocycles by using the Baylis–Hillman acetates
derived from heterocyclic aldehydes is currently
underway.
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Mn(OAc)3 (4 equiv)
EtOH, reflux, 48 h
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EtOH, reflux, 48 h
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aTrace amounts (3%) of diethyl 2,4-anthracene dicarboxylate was isolated.
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Table 1. Synthesis of 1,3-disubstituted naphthalenes 4a–f
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